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1. The general preoblem. Let us imagine we have a semi-infinite
plate at the leading edge of which there is an infinitely thin slot
source, from which there issues a stream of fluid, identical to that
which fills the space surrounding the plate; the fluid then flows along
one of the sides of the plate. We assume that the fluid in the surround-
ing space travels at constant velocity u, = const in the same direction
as the stream and so forms a neighbouring flow.

We locate the origin O of our system of rectangular coordinates at
the source of the stream, Ox being directed along the plate in the
direction of the stream. We will assume that the region where the motion
takes place is a boundary layer, the pressure gradient of which is zero.
To solve the problem we make use of the boundary layer equation in the
form proposed by von Mises [1].
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where ¥ is the stream function and u is the velocity compoment on the x
axis.

The solution to (1.1) should satisfy boundary conditions of the
following form:
u=0 for ¥=0, u=uy for Y=Y, 1.2)
where the volume-flow through any stream section ¥ = e« when u, # 0.
If uy = 0, i.e. we are solving the problem of the propagation of the
stream without the neighbouring flow[2,3 ], ¥_ has a finite value. In

addition to having the boundary conditions (1.5 it is then essential to
have the additional condition of the quantitative value of the stream
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strength. We can easily obtain this by rewriting Equation (1.1) in the
following form:

9 (ug—u) i 8 (uo — u)
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and then after multiplying Equation (1.3) by ¥d¥ we can integrate with
respect to ¥ and £, taking care to satisfy boundary conditions (1.2).
This results in an integral expression of the following form:
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When solving the stream problem with the neighbouring flow it is
necessary to see that the solution to Equation (1.1) satisfies boundary
conditions (1.2) and the integral condition (1.4) for a given condition
E=E

o‘

2. Propagation of the stream without the neighbo wing flow.
The solution to the uy = 0 problem must satisfy Equation (2.1), boundary
conditions (1.2) and the integral condition (1.4), which, for uy = 0
takes this form:

‘Yoo
S u¥d¥ = E, (2.1)
0

Bearing in mind that ¥ is the stream function it is easy to see that
condition (2.1) corresponds to the integral conditions already derived
ill [2’3 ] .

Let us try and find a solution to Equation (1.1) in this form:

u == '/ % 2 (m), m="Y (EwE)~ 2.2)
In order to find function ¢ we obtain a differential equation
2" +me’ +29=0 2.3

This should be solved with the following boundary conditions:
=0 at Mm=0 o¢=0 at =1, (2.4)
and integral condition (2.1) should be satisfied.

A particular solution to Equation (2.3) which automatically satisfies
the first boundary condition (2.4) can be found in implicit form, and
after satisfying the second boundary condition in (2.4) it appears as
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9=t (Vi—1?) {t ="/ Mgo) (2.5)

On satisfying integral condition (2.1) we find that n = 2.515 and
the solution to Equation (2.3) finally takes the form

¢ =1.054(Vi— ) (2.6)
Remembering that ¥ is the stream function, and therefore
¥
y = S d_;." @.7)

0

we can transform from von Mises' variables to variables (x, y). If we
insert expression (2.6) into formula (2.7) and express ¥ in terms of 5,
we can find the relation between parameter ¢t and variables (x, y) in the
form
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If we eliminate parameter t from (2.6) and (2.8) we can find the
dimensionless longitudinal velocity profile (Fig. 1) in the physical
plane where

1/ Ey 25
o (t) = F (%) (w=v ;,,I—z) F
We thus have a formula for the fluid \
velocity in the stream ] \
\
_ E [ E,
u=) 2r (y W) (2.9) [ \\\
The frictional stress at the wall is 04 cl't
‘ U
%, =0.221p fT;'}. . (2.10) F1G. 1.

3. Asymptotic solution of the problem of stream propagation
vith a neighbouring flov. It is only possible to arrive at a solu-
tion for u, # 0 for high values of ¢ because of the expansion in series,
For convenience, instead of inserting quantity E, into expression (1.4)
we introduce another quantity which has the dimension of length

E
Le=5,% (3.1)

Then the integral expression (1.4) takes this form:
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¥ =00
| wo—w ¥e¥ = wet (Fe— L) (3.2)
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We will look for a series solution to Equation (1.1), thus

u _ fr (n2) , fe(me) . - ¥ 3.3
iy oW Ty T ETL T (”” Vs € Lo) ) )

If we insert expansion (3.3) into Equation (1.1) we arrive at a system
of differential equations for determining the coefficients in expansion
(3.3) in the form

(fo?)” + nafo’ =0
(fofl')-l-’;"’hfl' +f=0 (3.4)
Gofa + 5 /2) +5mfe + 2+ =0

The corresponding boundary conditions which are obtained by putting
expansion (3.3) into the boundary conditions (2.2) appear as follows:

fo=h=fi=...=0 1pm 7 =0, fo=1, i=fa=...=0 mpE "3= oo (3.5)

The solutions to the differential equations (3.4) should also satisfy
the system of integral conditions

[o0) 00 o0 3

1 3 :
S (1 —fo) nedma =5, S fimedne = 3, & fomadma = — 3~ (8.6
0 ) 0

We should note that a long way downstream from the source, because of
the decreased intensity of the stream its flow close to the plate will,
in fact, be that of a boundary layer on a plate in a longitudinal con-
stant velocity stream. It follows that the solution of (3.3) for £ » w
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FIG. 2. FIG, 3.
should tend.to the Blasius solution [4]. It is easy to see that solution

(3.3) really does satisfy this condition, because the differential equa-
tion and the boundary conditions from which fo the first term in the
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expansion (3.3) is determined correspond exactly to the equation and the
boundary conditions of the Blasius problem re-calculated in von Mises’
variables. The solution to the Blasius equations is tabulated and it is
only necessary to re-calculate it in von Mises’ variables. Numerical
checking reveals that this solution automatically satisfies the first
integral condition of system (3.6).

Functions f,(y,) and f,(y,), which represent the additional velocity
due to the effect of the stream, were found by numerical integration of
the corresponding differential equations in system (3.4), satisfying, at
the same time, boundary conditions (3.5) and integral conditions (3.6).
Graphs of functions f,, f,, f, are shown in Fig. 2.

Returning now to the physical (x, y) plane, using the expression

¢ dng .
Vv(z+Lo) S foF Lol A+ L E) ot - -- 3.7

it is possible to find the velocity distribution u/u,. In Fig. 3 we show
a velocity distribution curve for the physical plane for f/L = 1.40 and,
for comparison, we also show a curve of velocity dlstrlbuuon for

f/L“ = e, 1.e. the Blasius distribution.
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