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1. ‘Ihe general preblem. let us imagine we have a s&-infinite 
plate at the leading edge of which there is au infinitely thin slot 
source, fraa which there issues a strean of fluid, identical to that 
which fills the space surrouuding the plate; the fluid then flows along 
one of the sides of the plate. We assune that the fluid in the surround- 
ing space travels at constant velocity u. = const iu the sBme direction 
as the stream aud so forms aneighbouring flow. 

Ik locate the origin 0 of our system of rectangular coordinates at 
the source of the stream,Oxbeingdirected along the plateinthe 
direction of the stream. Be will assmae that the region rhere the motion 
takes place is a bouudary layer, the pressure gradient of which is zero. 
To solve the problemwe malceuse of the bouudarylayerequationinthe 
fonnproposed by van hfises I1 1. 

uhere rP is the stream function aud u is the velocity mqoneut 
axis. 

The solution to (l.1) should satisfy boundary conditions of 
following folm: 

u=o for v=o. u=ug for Y='yo, 

(1.1) 

onthex 

the 

(1.2) 

where the volme-flow through any strelpl sectiou Y_= 00 wheu u0 f 0. 

If u0 = 0, i.e. we are solving the problem of the prqagatiou of the 
stream without the neighbouring flow [2,3 I, B has a finite value. In 
addition to having the boundary conditions (1.8 it is then essential to 
have the additional condition of tbe quantitative value of the stream 
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We can easily obtain this by rewriting Equation (1.1) in the 
form: 

a(@-u) a I a(U0-U) 
% =” m u au 3 (1.3) 

and then after multiplying Equation (1.3) by YprdrP we can integrate with 
respect to 'pr and 6, taking care to satisfy boundary conditions (1.2). 
This results in an integral expression of the following form: 

ecu 
“$E- \ (ur-u)YdY=E=const 

0 

(f-4) 

When solving the stream problem with the neighbouring flow it is 
necessary to see that the solution to JGquation (1.1) satisfies boundary 
conditions (1.2) and the integral condition (l.4) for a given condition 
E=E,. 

2. Propagation of the stream without the neighborring flow. 
lke solution to the ua = 0 problem must satisfy Equation (2.1), boundary 
conditions (1.2) and the integral condition (1.4), which, for u0 = 0 
takes this form: 

lu, 

5 uYdY = E. (2.1) 
6 

Bearing in mind that ‘P is the stream function it is easy to see that 
condition (2.1) corresnonds to the integral conditions already derived . 
in 12,3 1. 

Let us try and find a solution 

1(= 

In order to find function # we 

to Equation (l.l) in this form: 

q1= Y(Eov[)+ (2.2) 

obtain a differential equation 

2 WY + 119 + 2P = 0 (2.3) 

'Ihis should be solved with the following boundary conditions: 

cp=o at 1)1=0. 9----O at q~=q, (2.4) 

md integral condition (2.1) should be satisfied. 

A particular solution to Equation (2.3) which automatically satisfies 
the first boundary condition (2.4) can be found in implicit form, and 
after satisfying the second boundary condition in (2.4) it appears as 
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cp = $ ‘),-&a (I/L P) :t=?l/?,) (2.5) 

On satisfying integral condition (2.1) we find that q _,= 2.515 and 
the solution to Equation (2.3) finally takes the form 

‘p = 1.054 (V/r- P) (2.6) 

Fkaambering that Pr is the stream function, and therefore 

m can 
insert 
‘1R CBn 
form 

Y 

y= q s (2.7) 

0 

transform from von htises’ variables to variables (x, y). If we 
expression (2.6) into formula (2.7) and express ‘1p in terms of q1 
find the relation betwen parameter t and variables (x, y) in the 

If we eliminate parsmeter t from (2.6) and (2.8) we can find the 
dimensionless longitudinal velocity profile (Fig. 1) in the physical 
plane where 

P (1) = F (G) (b=yf-S) 

We thus have a fonsula for the fluid 
velocity in the stream 

lhe frictional stress 

(2.9) 

at the wall is 

4 

?,=0.22ip ;g... 
1/- 

(2.10) 
FIG. 1. 

G-9 

3. Asymptotic solution of the problem of stream propagation 
with a neighbonring flow. It is only possible to arrive at a solu- 
tion for u0 f 0 for high values of 6 because of the expansion in series. 
For convenience, instead of inserting quantity E,, into expression (1.4) 
we introduce another qusntity which has the dimansion of length 

(3.1) 

Ihen the integral expression (1.4) takes this form: 
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Ym =cn 

5 (u. - uj YdY = vuoz (+F-1.) 
0 

We will look for a series solution to Equation (l.l), thus 

(3.2) 

_!Lfo(~l)+f’+++.. . 
(SILO) E/W ( r)2 = vvuo ;+ Lo) , ) (3.3) 

uo 

If we insert expansion (3.3) into Equation (1.1) we arrive at a system 

of differential equations for determining the coefficients in expansion 

(3.3) in the form 

(foal” + uiafo’ = 0 
1 

(fofi’)+ 2 1afi’ + h = 0 (3.4) 

(faf~+f/*a)‘+~Ilja~+2fa+fl=~ 

Ihe corresponding boundary conditions which are obtained by putting 

expansion (3.3) into the boundary conditions (2.2) appear as follows: 

fo=f1=fn=...=O npEf r)*=o, f0 = 1, jl = fa = . . . =O IIpki ;]a = 00 (3.5) 

‘lhe solutions to the differential equations (3.4) should also satisfy 
the system of integral conditions 

co CO M 

s 
(I- fo) qad?a = k 9 5 fl*laQa = % t \ faqadqr = - $ (3.6) 

0 0 0 

We should note that a long way downstream from the source, because of 

the decreased intensity of the stream its flow close to the plate will, 

in fact, be that of a boundary layer on a plate in a longitudinal con- 

stant velocity stream. It follows that the solution of (3.3) for [ + 00 

FIG. 2. FIG. 3. 

should tend .to the Blasius solution I 4 1 . It is easy to see that solution 
(3.31 really does satisfy this condition, because the differential equa- 

tion and the boundary conditions from which f,, the first tern in the 
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eqmusiou (3.3) is determined correspond exactly to the equation and the 
boundary conditions of the Blasius problem re-calculated in von Mises' 
variables. 'lhe solution to the Blasius equations is tabulated and it is 
only necessary to re-calculate it in von Mises' variables. Numerical 
checking reveals that this solution automatically satisfies the first 
integral condition of system (3.6). 

Functions f1(q2) and f2(q2), which represent the additional velocity 
due to the effect of the stream, were found by numerical integration of 
the corresponding differential equations in system (3.4), satisfying, at 
the sama time, boundary conditions (3.5) and integral conditions (3.6). 
Graphs of functions f,,, fl, jz are shown in Fig. 2. 

Returning now to the physical (x, y) plane, using the expression 

J 
Ilr 

fit =y 
UO s drla 

v@+Lo)= fo + wcl / El fl + Go2 / m fa + - * * (3.7) 
o 

it is possible to find the velocity distribution u/us. In Fig. 3 we show 
a velocity distribution curve for the physical plane for t/L,, = 1.40 and, 
for comparison, we also show a curve of velocity distribution for 

UL, = 00, i.e. the Blasius distribution. 
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